Ensembles NNP Seminar

Christoph Beberweil

Institute of Applied Physics | Goethe University Frankfurt

November 9, 2023

Contents

Applications of ensembles

Machines

Fermilab Integrable Optics Test Accelerator AD Cooler at Cern

Gabor lenses and Electron sources

Planned Simulations

Applications of ensembles

Focusing

Figure: Sketch of the radial electric field of two electron distributions. Left: Homogeneous distribution. Right: Torus distribution.

Electron Cooling

- Velocity of electrons matches velocity of ion beam
- Heat transfer between both beams
- Heat is removed from the system as the electrons are extracted

Figure: Electrons and ions in the electrons rest frame

p

е

 e^{-}

 \bar{p}

 e^{-}

 e^{-}

p

Fermilab IOTA

- Pulsed Electron lens act as nonlinear optics by applying kicks to a circulating beam
- Investigation of a large tune spread in a storage ring

Figure: Simulation and schematic of the initial electron lens design at Fermilab IOTA[1]

CERN Generation of antiprotons

- Proton Synchrotron emits a proton beam on a metal target
- Antiprotons are generated with a wide distribution of energy and velocity
- Some antiprotons can be injected into the Antiproton Decelerator
- Antiprotons are decelerated and cooled for experiments

AD-Cooler

Figure: Computer rendering of the AD-Cooler in the Antiproton Decelerator at CERN [2]

Cooling

Figure: Cooling modes of the AD. Stochastic(kicker) & electron cooling.[3]

Figure: Electron Source. Physicists at work [4]

Figure: Gabor Cusp Design for injecting electrons in a Gabor lens. CST. [4]

Figure: Density boosting in a Gabor lens using an electron source. Left: Density Measurement via momentum spectrum. Right: CST Simulation of electron movement with an internal electron source. [4]

Figure: Long time simulations of externally supplied electron and their drifts in a Gabor Lens. Bender. 5,000ns and 50,000ns simulation time. [4]

Planned Simulations

Fields and beam Propagation of the AD Cooler Structure

Figure: CST simulation of electron trajectories in the AD Cooler. [5]

Space charge effects of both beams

Static alternative for the AD-Cooler

- Realize the interaction section by using a Gabor lens
- Entry and exit are clear
- Plasma parameters can be adjusted

Sources

Giulio Stancari (Fermilab) Daniel Noll (IAP).

Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the fermilab integrable optics test accelerator.

Gerard Alain Tranquille (CERN).

New ad electron cooler.

- 🧧 D. Gamba, L. Bojtár, C. Carli, B. Dupuy, A. Frassier, L.V. Jørgensen, L. Ponce, and G. Tranquille.
- Christoph Beberweil, Martin Droba, S Klaproth, O Meusel, D Noll, H Podlech, K Schulte, KI Thoma, S Gammino, D Mascali, et al.

Investigation of electron beam assisted density boosting in plasma traps using the example of a Gabor plasma lens.

PhD thesis, Universitätsbibliothek Johann Christian Senckenberg, 2017.

Gunn KHATRI (CERN).

Ad cons e-cooler: first simulation of complete system.